UNIT-IV

Connected Spaces

Defn:

Let X be a topological space . A separation of X is a pair U, V of disjoint non-empty open subsets of X whose union is X.

Defn:

The space X is said to be connected if there does not exist a separation of X.

Lemma: 23.1

If Y is a subspace of X, a separation of Y is a pair of disjoint non-empty sets A & B, whose union is Y, neither of which contains a limit point of the other. The space Y is connected if there exists no separation of Y.

Proof:

Let A & B form a separation of Y.

Then A is both open & closed in Y.

Since A is closed in Y, $A=\bar{A}\cap Y$ where \bar{A} is the closure of A in X.

Now, $A \cap B = (\bar{A} \cap Y) \cap B$

 $= \bar{A} \cap (Y \cap B)$

 $\bar{A} \cap B = \emptyset$

Since A contains all the limit points of A, we see that B contains no limit points of A.

Similarly, we can prove that A contains no limit points of B.

For, B is closed in Y, $B = \overline{B} \cap Y$ where \overline{B} is the closure of B in X.

$$A \cap B = A \cap (\overline{B} \cap Y)$$
$$= (A \cap Y) \cap \overline{B}$$
$$= A \cap \overline{B}$$
$$\Rightarrow A \cap B = \emptyset$$

 $\therefore \bar{B}$ contains all the limit points of B.

We see that A contains no limit points of B.

Conversely,

Suppose A & B are non-empty disjoint sets whose union is Y, neither of which contains a limit points of the other.

Then
$$\bar{A} \cap B = \emptyset \& A \cap \bar{B} = \emptyset$$

Now, $\bar{A} \cap Y = \bar{A} \cap (A \cup B)$

 $=(\bar{A}\cap A)\cup(\bar{A}\cap B)$

= AU Ø

 $\bar{A} \cap Y = A$

 $[: A \subset \overline{A} \Rightarrow A \cap \overline{A} = A]$

: A is closed in Y.

Similarly, $\bar{B} \cap Y = \bar{B} \cap (A \cup B)$

 $= (\bar{B} \cap A) \cup (\bar{B} \cap B)$

$$\overline{B} \cap Y = B$$
 [: $A \neq \emptyset$, $B \neq 0$, $Y = A \cup B$ and $A \cap B = \emptyset$]

Also A = Y-B & B = Y-A

A & B are open in Y.

A & B form a separation of Y.

Lemma: 23.2

If these sets C and D form a separation of X, and if Y is a connected subspace of X then Y lies entirely within either C or D.

Proof:

Let the sets D and C form a separation of X.

Since C and D are both open in X.

 $C \cap Y$ and $D \cap Y$ are both open in Y.

Also, they are disjoint and their union is Y.

Since,
$$(C \cap Y) \cup (D \cap Y) = (C \cup D) \cap Y$$

 $= X \cap Y$

= Y

 $(C \cap Y) \cap (D \cap Y) = (C \cap D) \cap Y$

 $=\emptyset\cap Y$

 $= \emptyset$

If both of them non empty, they form a separation of Y.

Since Y is connected, either $C \cap Y = \emptyset$ or $D \cap Y = \emptyset$

If $C \cap Y = \emptyset$, then $Y \subset D$

If $D \cap Y = \emptyset$, then $Y \subset C$

Hence $Y \subset C$ or $Y \subset D$

Theorem: 23.3

The union of a collection of connected subspaces of X that have a point in common is connected.

Proof:

Let $A\alpha$ be a collection of connected subspaces of a space X.

Let $Y = UA\alpha$

Let they have a point in common.

∴ P ∈ ∩Aα (say)

 \therefore P \in A α , for each α

Claim: Y is connected.

Suppose Y is not connected.

Then $Y = C \cup D$, form a separation of Y.

 $C \neq \emptyset$, $D \neq \emptyset$, $C \cap D = \emptyset$

Now, P ∈ Y=CUD

 $\therefore P \in C \text{ (or) } P \in D$

Assume that $P \in C$

Since each $A\alpha$ is a connected subset of Y, either $A\alpha \subset C$ (or) $A\alpha \subset D$ (: by lemma 23.2)

Since $P \in C$, $A\alpha$ can not lie in D.

Hence $A\alpha \subset C$, for each α .

 $\therefore \cup A\alpha \subset C$

ie) Y ⊂ C

Always $C \subset Y$

 $\therefore Y = C$

 $D = \emptyset$

Which is $a \Rightarrow \in D \neq \emptyset$

 \therefore Y = \cup A α is connected.

Theorem: 23.4

Let A be a connected subspace of X. If A⊂B⊂Ā then B is also connected.

Proof:

Let A be a connected subspace of X and Let $A \subset B \subset \overline{A}$

To Prove: B is connected.

Suppose B is not connected.

Then $B = C \cup D$ is a separation of B.

ie)
$$(C \cup D = B, C \neq \emptyset, D \neq \emptyset, C \cap D = \emptyset)$$

Since A is a connected subspace of B, A⊂C or A⊂D [∵ by lemma:23.2]

Suppose A⊂C

 $\therefore \bar{A} \subset \bar{C}$

 $B \subseteq \bar{A} \subseteq \bar{C}$

Since $\overline{C} \cap D = \emptyset$ and $C \cap \overline{D} = \emptyset$ (: by lemma 23.1)

Since $\bar{C} \cap D = \emptyset$, we have $\bar{A} \cap D = \emptyset$ (: $\bar{A} \subset \bar{C}$)

$$\therefore B \cap D = \emptyset \ (\because B \subset \overline{A})$$

Hence B⊂C

 $D = \emptyset$

Which is a $\Rightarrow \Leftarrow$ to our assumption.

Hence B is connected.

Theorem: 23.5

The image of a connected space under a continuous map is connected. (or) continuous image of a connected space is connected. (or) P.T connectedness is a topological property.

Proof:

Let X, Y be a topological spaces.

Let $f: X \rightarrow Y$ be continuous map.

Suppose X is connected.

T.P f(X) is connected.

Take Z=f(X) and consider the subspace topology in Z. consider the restricted map $g:X \rightarrow Z$ by g(x)=f(x) for every $x \in X$.

Then g is a Surjective continuous map. [: f is a restricted by the range] Suppose Z is not connected.

Then $Z = C \cup D$ is a separation of Z, where C & D are non-empty disjoint open subset in Z.

Now,
$$Z = f(X)$$

 $X = f^{-1}(Z)$
 $= g^{-1}(Z) = g^{-1}(C \cup D)$
 $X = g^{-1}(C) \cup g^{-1}(D)$

Since g:X→Z is continuous and C, D are open in Z.

Then $g^{\text{-1}}(C)$ & $g^{\text{-1}}(D)$ are open in X. [: f is continuous iff inverse image of the open set is open]

$$g^{\text{-l}}(C)\cap g^{\text{-l}}(D)=\emptyset\quad [\because g^{\text{-l}}(C)\cap g^{\text{-l}}(D)=g^{\text{-l}}(C\cap D)=g^{\text{-l}}(\emptyset)=\emptyset]$$

Since $g^{-1}(C)$ & $g^{-1}(D)$ form a separation of X, X is not connected. $\Longrightarrow \longleftarrow$ to X is connected.

Hence Z = f(X) is connected.

: continuous image of a connected space is connected.

Theorem: 23.6

A finite Cartesian product of connected space is connected.

Proof:

First we prove the theorem for the product of two connected space X and Y.

Claim: X×Y is connected.

Choose a base point $a \times b(X \times Y)$.

Consider the horizontal slice X×b being homeomorphic to X.

... The horizontal slice X×b is connected.

Consider the vertical slice x×Y being homeomorphic to Y.

... The vertical slice x×Y is connected.

As a result each T shaped space $T_x=(X\times b)\cup(x\times Y)$ is connected.(It is the union of two connected space that have a common point namely $X\times b$)

Now,

 $X \times Y = i x \in XT$

 $\therefore ix \in XT_x$ is connected since they have a common point a×b.

∴X×Y is connected.

Next we shall prove that $X_1 \times X_2 \times ... \times X_n$ is connected ,i=1,2,3....n

Now we prove the result by induction method when n=2,the result is already proved.

Let us assume that the result is true for n-1.

i.e $X_1 \times X_2 \times X_3 \times \dots X_{n-1}$ is connected.

Since $(X_1 \times X_2 \times ... X_{n-1}) \times X_n$ is homeomorphic to $(X_1 \times X_2 \times ... X_{n-1})$.

 $X_1 \times X_2 \times \dots X_n$ is connected.

Section: 26

Compact spaces

Definition

A collection A of subsets of a space X is said to cover X, or to be a covering of X, if the union of the elements of A is equal to X. It is called an open covering of X if its elements are open subsets of X.

Definition

A space X is said to be compact if every open covering A of X contains a finite subcollection that also covers X.

Lemma: 26.1

Let Y be a subspace of X. Then Y is compact iff every covering of Y by sets open in X contains a finite subcollection covering Y.

Proof:

Suppose Y is compact.

Let $A = \{A_{\alpha}\}_{\alpha \in J}$ be an open covering for Y by sets open in X.

Since A_{α} is open X for each, $A_{\alpha} \cap Y$ is open in Y.

Then $\{A_{\alpha} \cap Y\}_{\alpha \in J}$ is open covering for Y by sets open in Y.

Since Y is compact, this open cover has a finite subcover $A_{\alpha_1} \cap Y$, $A_{\alpha_2} \cap Y$, $A_{\alpha_n} \cap Y$. (say)

Then the corresponding elements $A_{a1}, A_{a2}, \dots, A_{am}$ of A covers Y.

Conversely,

Assume the condition

Claim: Y is compact.

Let $\{A_{\alpha}\}_{\alpha \in J}$ be an open covering of Y by sets open in Y.

Now, $A_{\alpha}' = A_{\alpha} \cap Y$, where A_{α} is open in X.

Now, $\{A_{\alpha}\}$ is a open cover for Y by sets open in X.

By our assumption,

This open cover has a finite subcover $A_{\alpha 1}, A_{\alpha 2}, \dots, A_{\alpha m}$. (say)

Then the corresponding elements $A'_{\alpha 1}, A'_{\alpha 2}, \dots, A'_{\alpha m}$ is a finite subsets for Y.

Hence Y is compact.

Theorem: 26.2

Every closed subspace of a compact space is compact.

Proof:

Let Y be a closed subspace of a compact space X.

Claim: Y is compact.

Let A be an open covering for Y by sets open in X.

Since Y is closed, X-Y is open in X.

 \therefore { $A \cup \{X-Y\}$ } is a open cover for X.

Since X is compact this open cover has a finite subcover.

If this finite subcollection contains the set {X-Y} discard {X-Y}, otherwise leave the subcollection alone.

$$\{A_{\alpha 1} \cup (X-Y)\} \cup \{A_{\alpha 2} \cup (X-Y)\} \cup \dots \cup \{A_{\alpha n}(X-Y)\}$$

 $\dot{\iota}(A_{\alpha 1}, A_{\alpha 2}, \dots A_{\alpha n}) \cup (X-Y)$

The resulting collection is a finite subcollection of A that covers Y.

∴Y is compact.

Theorem: 26.3

Every compact subspace of a Hausdorff space is closed.

Proof:

Let X be a hausdorff space and let Y be a compact subspace of X.

i.e. To prove: X-Y is open.

Let
$$x_0 \in X - Y$$

i.e.
$$x_0 \in X, x_0 \notin Y$$

for each $y \in Y, x_0 \neq y$.

Since X is a Hausdorff space, then there exists neighbourhood U_y and V_y of X_0 and y respectively such that $U_y \cap V_y = \emptyset$ (1).

Let $\{V_y/y \in Y\}$ be an open covering for Y.

Since Y is compact, there exist a finite subcover $V_{y1}, V_{y2}, \dots, V_{yn}$ whose union covers Y.

Let
$$V = V_{y1} \cup V_{y2} \cup \dots \cup V_{yn}$$
.

Let $U_{y1}, U_{y2}, \dots U_{yn}$ be the corresponding neighbourhood of x_0 .

Let
$$U=U_{y1}\cap U_{y2}\cap\cap U_{yn}$$
.

Then U is an neighbourhood of x₀.

Also V is an open set inY.

Claim: U∩V=Ø

Suppose $U \cap V \neq \emptyset$.

Choose $z \in U \cap V$.

∴
$$z \in U$$
 and $z \in V$.

Now, $z \in U \Rightarrow z \in U_{yj}$, for all j=1,2,...n

 $z \in V \Rightarrow z \in V_{yj}$, for some j.

$$\therefore z \in U_{yj} \cap V_{yj}$$

 $\therefore U_{yj} \cap V_{yj} \neq \emptyset$ which is a contradiction to (1).

$$\therefore U \cap V = \varnothing.$$

$$\therefore U \subset X - Y$$
.

$$\therefore X - Y$$
 is open.

Hence Y is closed.

THEOREM:26.5

The image of a compact space under a continuous map is compact.

Proof:

Let $f: X \to Y$ be continuous.

Let X be compact.

Claim; f(X) is compact.

Let A be an open covering of f(X) by sets open in Y.

Since f is continuous, $\{f^{\perp}(A) | A \in A \}$ is an open cover for X.

Since X is compact, this open cover has a finite subcover $f^{-1}(A_1), f^{-1}(A_2) \dots f^{-1}(A_n)$ (say) that covers X.

Then the sets $A_1, A_2, ..., A_n$ covers f(X).

: f(X) is compact.

THEOREM: 26.6

Let $f: X \to Y$ be a bijective continuous function. If X is compact and Y is Hausdorff, then f is a homeomorphism.

Proof:

Let f: X -Y be a bijective continuous function.

T.P: f is a homeomorphism.

It is enough to prove that f is continuous.

i.e) to prove that if A is closed in X, then f (A) = f(A) is closed in Y.

Let A be closed in X, X is compact (given), A is compact in X.

Since f is continuous, f(A) is compact in Y.

Since Y is hausdorff, f(A) is closed in Y.

∴ f-1 is continuous.

Hence f is a homeomorphism.

LEMMA: 26.8

The tube lemma

Consider the product space $X \times Y$, where Y is compact. If N is an open set of $X \times Y$ containing the slice $x_0 \times y$ of $X \times Y$, then N contains some tube $W \times Y$ about $x_0 \times y$, where w is a nbd of x_0 in X.

Proof:

First let us cover x × y by basis element U× V lying in N.

Since xo x y is homeomorphic to Y and Y is compact.

∴ x_n × y is compact.

We can cover $x_0 \times y$ by finitely many basis element (say) $U_1 \times V_1$, $U_2 \times V_2$, $U_n \times V_n$

Let $W = U_1 \cap U_2 \cap ... \cap U_n$

Then W is a nbd of xo.

We claim the basis element $U_i \times V_i$, i = 1,2,...n which covers $x_n \times y$ also covers $W \times Y$

Let $x \times y \in W \times Y$

Consider the point $x_0 \times y$ of the slice $x_0 \times y$ having the same y coordinate that of $x \times y$.

Now, $x_a \times y \in U_i \times V_i$ for some i.

 $\therefore y \in V_i$ and $x \in U_i \forall j$.

 $\therefore x \times y \in U_i \times V_i$ for some i.

 $\therefore \mathbf{x} \times \mathbf{v} \in (\mathbf{U}_i \times \mathbf{V}_i) \cup \cup (\mathbf{U}_n \times \mathbf{V}_n)$

 $: W \times Y \subset (U_1 \times V_1) \cup \cup (U_n \times V_n)$

Since each $U_i \times V_i$ lies in $N_*(U_i \times V_i) \cup (U_2 \times V_2) \cup \cup (U_n \times V_n)$ contained in N_*

.: W × Y contained in N.

THEOREM; 26.7

The product of finitely many compact spaces is compact.

Proof:

We shall prove that the product of two compact spaces is compact.

Then the thm follows by induction for any finite product.

STEP:1

State and prove tube lemma.

STEP: 2

Let X and Y be two compact spaces.

CLAIM: X → Y is compact.

Let A be an open covering for $X \times Y$.

Choose any $x_o \in X$ and fix it.

Consider x, x y

Since $x_0 \times y$ is compact, there are finitely many members (say) A_1, A_2, \dots, A_m which cover $x_0 \times y$

Now define $N = A_1 \cup \cup A_m$

Then N is an open set containing the slice $x_o \times y$, there exist a neighbourhood W of x_o such that $W \times Y \subset N$

∴ For each $x \in X$, we can choose a neighbourhood W_x of x such that $W_x \times Y$ can be covered by finitely many elements of A.

Consider the collection $\{W_x/x \in X\}$ be an open covering of X.

Since X is compact, there exists a finite subcollection W1, W2,, Wn cover X.

: X = U (+1 W)

Now $X \times Y = (W_1 \times Y) \cup \cup (W_n \times Y)$

: A has finite subcollection that covers X × Y.

Hence X × Y is compact.

STEP: 3

We prove that finite product of compact spaces is compact.

We have to prove the result by induction on n.

By step 2; The result is true for n=2

Assume that the result is true for n.

We have to prove the result for $n+1(X_1 \times X_2 \times X_n) \times X_{n+1}$ is compact.

. The result is true for n+1.

Thus the finite product of compact space is compact.

Defn:

A collection G of subsets of X is said to have the finite intersection property if for every finite subcollection $\{C_1, C_2, ..., C_n\}$ of G, the intersection $C_1 \cap C_2 \cap ... \cap C_n$ is non-empty.

THEOREM: 26.9

Let X be a topological space. Then X is compact iff for every collection G of closed sets in X having the finite intersection property. The intersection $c \in G$ of all the elements of G is non-empty.

Proof:

Given a collection A of subsets of X.

Let $G = \{X - A / A \in A\}$ be the collection of their complements.

Then $\mathcal A$ is a collection of open sets iff $\mathcal G$ is a collection of closed sets.

Claim: 1

The collection A covers X iff the intersection c, $c \in G$ of all the elements of G is empty.

For,
$$\mathcal{A}$$
 covers $X = U_{\Lambda} \in \mathcal{A} = X$
 $\Leftrightarrow (U_{\Lambda} \in \mathcal{A} \quad A)^{c} = X^{c}$
 $\Leftrightarrow n_{\Lambda}{}^{c} \in \mathcal{G} \quad A^{c} = \emptyset$
 $\Leftrightarrow n_{C} \in \mathcal{G} \quad C = \emptyset$

Claim: 2

The finite subcollection $\{A_1, A_2, \dots, A_n\}$ of \mathcal{A} covers $X \Leftrightarrow$ the intersection of the corresponding elements $C_1 = X - A_1$ of \mathcal{G} is empty.

For,
$$\{A_1, A_2, ..., A_n\}$$
 covers $X \Leftrightarrow \bigcup_{i=1}^n A_i = X$
 $\iff (\bigcup_{i=1}^n A_i)^e = X^e \implies \bigcap_{i=1}^n A_i^e = \emptyset$
 $\implies \bigcap_{i=1}^n C_i = \emptyset$

Suppose X is compact.

Let G be a collection of closed sets having finite intersection property.

Claim: $\bigcap_{c} \in \mathcal{G} \neq \emptyset$

On the contrary

Suppose $\cap_{c} \in \mathcal{G}$ $C = \emptyset$

The collection $\mathcal{A} = \{X - C / c \in \mathcal{G}\}$ is an open covering of X.

Since X is compact, there is a finite subcollection { A1, A2, ..., An } of A also covers X.

Then
$$C_1 \cap C_2 \cap C_n = \emptyset$$

Which is a contradiction to G has the finite intersection property.

∴n_k∈ g C≠ Ø

Conversely,

Suppose $\cap_v \in \mathcal{G}$ $C \neq \emptyset$ for every collection \mathcal{G} of closed sets having finite intersection property.

T.P: X is compact.

Let A be an open covering of X.

 $G = \{X - A / A \in \mathcal{A}\}\$ is the collection of closed sets s.t $\cap_{c} \in G$ $C = \emptyset$

Then G cannot have the finite intersection property.

By claim :2, (A1, A2,, An) covers X.

Thus every open covering X contains a finite subcollection that also covers X.

Hence X is compact.